Problem 11217. Proposed by Michel Bataille, Rouan, France. For a positive integer let S_n denote the set of all numbers of the form
\[
x^n y^m z^n \frac{y^n}{y^n-1} \frac{z^n}{z^n-1} \frac{x^n}{x^n-1}
\]such that x, y and z are positive numbers, each different from 1, with $xyz = 1$. Show that S_n is bounded below, and find the greatest lower bound of S_n in terms of n.

Solution, by Omran Kouba (Higher Institute for Applied Sciences And Technology, Damascus, Syria).

The answer is $\inf S_n = 1 + 9 \left(\frac{n}{2} \right)$. Let us define $f_n(x, y, z)$ by
\[
f_n(x, y, z) = \frac{x^n}{y^n-1} \frac{y^n}{z^n-1} \frac{z^n}{x^n-1}
\]where n is a positive integer, x, y and z are positive numbers, each different from 1. It is a trivial to see that
\[
f_1(x, y, z) = \frac{x}{y-1} + \frac{y}{z-1} + \frac{z}{x-1}
\]so, if $xyz = 1$ then $f_1(x, y, z) = 1$, that is $S_1 = \{1\}$. In order to study the general case, we will use the following lemma where we express $f_n(x, y, z)$ differently.

Lemma. If $xyz = 1$ then
\[
f_{n+1}(x, y, z) = A_{n-2}(x, y, z) + B(x, y, z) A_{n-1}(x, y, z) + A_n(x, y, z)
\]where
\[
A_n(x, y, z) = \sum_{k+\ell+m=n} \left(\frac{x}{y} \right)^k \left(\frac{y}{z} \right)^\ell \left(\frac{z}{x} \right)^m
\](in particular $A_{-1}(x, y, z) = 0$, $A_0(x, y, z) = 1$) and
\[
B(x, y, z) = 1 + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z}.
\]

- Now, since $xyz = 1$ and using the fact that $a + \frac{1}{a} \geq 2$ for a positive number a, we see that
\[
B(x, y, z) = 1 + x + \frac{1}{x} + y + \frac{1}{y} + z + \frac{1}{z} \geq 7
\]with equality if $x = y = z = 1$.

- It is clear that the product of the terms in the sum defining $A_n(x, y, z)$ equals 1, so using the arithmetic-geometric mean inequality we find that
\[
A_n(x, y, z) \geq \text{card} \{ (k, \ell, m) \in \mathbb{N}^3 : k + \ell + m = n \} = \binom{n+2}{2}
\]with equality if $x = y = z = 1$.

Then, under the assumption $xyz = 1$ we have
\[
f_{n+1}(x, y, z) \geq \binom{n}{2} + 7 \binom{n+1}{2} + \binom{n+2}{2} = 1 + 9 \binom{n+1}{2}
\]with equality if $x = y = z = 1$. Note that, by the lemma, 1 is not a real singularity of $f_n(x, y, z)$ if $xyz = 1$.

Proof of the Lemma. We will use generating functions, clearly we have

\[
\sum_{n=0}^{\infty} f_{n+1}(x, y, z)U^n = \frac{x}{1-(x/y)U} + \frac{y}{1-(y/z)U} + \frac{z}{1-(z/x)U} = \alpha + \beta U + \gamma U^2 \frac{(1-(x/y)U)(1-(y/z)U)(1-(z/x)U)}{(1-(x/y)U)(1-(y/z)U)(1-(z/x)U)}
\]

Where \(\alpha, \beta \) and \(\gamma \) are functions of \(x, y \) and \(z \) to be calculated. Using \(xyz = 1 \) we find

\[
\gamma = \frac{y}{(y-1)(1-x)} + \frac{z}{(z-1)(1-y)} + \frac{x}{(x-1)(1-z)} = f_1 \left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z} \right) = 1
\]

and finally, noting that under the assumption \(xyz = 1 \), (and may be, by using a computer algebra system,) we have

\[
f_2(x, y, z) = 1 + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} + \frac{x}{y} + \frac{y}{z} + \frac{z}{x} = 1
\]

consequently, comparing the coefficient of \(U \), we get

\[
\beta = 1 + x + y + z + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = B(x, y, z)
\]

So, we have proved

\[
\sum_{n=0}^{\infty} f_{n+1}(x, y, z)U^n = \frac{1 + B(x, y, z)U + U^2}{(1 - \frac{x}{y}U)(1 - \frac{y}{z}U)(1 - \frac{z}{x}U)}.
\]

On the other hand we have

\[
\frac{1}{(1 - \frac{x}{y}U)(1 - \frac{y}{z}U)(1 - \frac{z}{x}U)} = \sum_{n=0}^{\infty} A_n(x, y, z)U^n
\]

and we get the result by comparing the coefficient of \(U^n \) on both sides of the equality

\[
\sum_{n=0}^{\infty} f_{n+1}(x, y, z)U^n = (1 + B(x, y, z)U + U^2) \sum_{n=0}^{\infty} A_n(x, y, z)U^n.
\]

This ends the proof of the lemma.
Problem 11219. Proposed by R. A. STRUBEZ, Santa Monica, CA. Prove that when \(n \) is a positive integer and \(s \) is a real number greater than 1

\[
1 + n(\zeta(s) - 1) \leq \sum_{k=0}^{\infty} \left(\frac{n}{n+k} \right)^s \leq n\zeta(s).
\]

Solution, by OMAR KOUBA (Higher Institute for Applied Sciences And Technology, Damascus, Syria).

Using the Euler gamma function defined by \(\Gamma(s) = \int_0^\infty u^{s-1}e^{-u}du \) for \(s > 0 \) we find, by simple change of variable \(u \leftarrow (1 + \frac{k}{n})t \), that

\[
\left(\frac{n}{n+k} \right)^s = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1}e^{-t} \exp \left(-\frac{kt}{n} \right) dt.
\]

Noting that \((k, t) \mapsto t^{s-1}e^{-t} \exp \left(-\frac{kt}{n} \right) \) is positive, we can sum over \(k \) to find that, for \(s > 1 \) and \(n \in \mathbb{N}^* \), we have

\[
\sum_{k=0}^{\infty} \left(\frac{n}{n+k} \right)^s = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \frac{e^{-t}}{1 - e^{-t/n}} \frac{1 - e^{-t}}{1 - e^{-t/n}} dt
\]

and

\[
\sum_{k=1}^{\infty} \left(\frac{n}{n+k} \right)^s = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \frac{e^{-t}}{e^t - 1} \frac{e^t - 1}{e^{t/n} - 1} dt.
\]

In particular, for \(n = 1 \) we get

\[
\zeta(s) = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \frac{e^{-t}}{1 - e^{-t}} dt \quad \text{and} \quad \zeta(s) - 1 = \frac{1}{\Gamma(s)} \int_0^\infty t^{s-1} \frac{e^{-t}}{e^t - 1} dt
\]

So the desired inequalities are direct consequences of the following two inequalities

\[
\frac{1 - e^{-t}}{1 - e^{-t/n}} = \sum_{j=0}^{n-1} e^{-jt/n} \leq n \quad \text{and} \quad \frac{e^t - 1}{e^{t/n} - 1} = \sum_{j=0}^{n-1} e^{jt/n} \geq n.
\]

which are clearly true if \(t > 0 \) and \(n \in \mathbb{N}^* \).
Problem 11220. Proposed by David Beckwith, Sag Harbor, NY. Show that when \(n \) is a positive integer

\[
\sum_{r=0}^{n} (-1)^r \binom{n}{r} \left(\frac{2n - 2r}{n - 1} \right) = 0.
\]

Solution, by Omran Kouba (Higher Institute for Applied Sciences And Technology, Damascus, Syria).

This is a simple consequence of the following result.

Lemma. If \(P \) is a complex polynomial such that \(\deg P < n \) then

\[
\sum_{r=0}^{n} (-1)^r \binom{n}{r} P(r) = 0.
\]

because the polynomial \(Q(X) = \frac{1}{(n-1)!} (2X)(2X-1)\cdots(2X-n+2) \) is of degree \(n - 1 \), and the desired sum can be written in the following way

\[
\sum_{r=0}^{n} (-1)^r \binom{n}{r} \left(\frac{2n - 2r}{n - 1} \right) = (-1)^n \sum_{r=0}^{n} (-1)^r \binom{n}{r} \left(\frac{2r}{n - 1} \right) = (-1)^n \sum_{r=0}^{n} (-1)^r \binom{n}{r} Q(r).
\]

proof of the lemma. It is enough to prove it when \(P = X^k \) for \(0 \leq k < n \), and to do this, we note that

\[
\sum_{r=0}^{n} (-1)^r \binom{n}{r} e^{rz} = (1 - e^z)^n
\]

so \(z_0 = 0 \) is a zero of order \(n \) of the analytic fonction \(z \mapsto f(z) = \sum_{r=0}^{n} (-1)^r \binom{n}{r} e^{rz} \) and consequently \(f^{(k)}(0) = 0 \) for \(0 \leq k < n \) and this means that

\[
\forall k \in \{0, 1, \ldots, n - 1\}, \quad \sum_{r=0}^{n} (-1)^r \binom{n}{r} r^k = 0
\]

and this finishes the proof of the lemma.

Published in AMM April 2008.
Problem 11248. Proposed by Pál Péter Dályay, Deák Fernek Hight School, Szeged, Hungary. Let \(n \) be a positive integer, and let \(f \) be continuous real-valued function on \([0, 1]\) with the property that \(\int_0^1 x^k f(x) \, dx = 1 \) for \(0 \leq k \leq n - 1 \). Prove that \(\int_0^1 (f(x))^2 \, dx \geq n^2 \).

Solution, by Omran Kouba (Higher Institute for Applied Sciences and Technology, Damascus, Syria).

We will use Legendre polynomials, defined, for \(n \in \mathbb{N} \), by \(\ell_n(X) = \frac{1}{n!} \frac{d^n}{dX^n} ((X^n(X - 1)^n) \). In fact, we will make use of the following two properties:

1. Orthogonality: for \((n, m) \in \mathbb{N}^2\), we have \(\int_0^1 \ell_n(x)\ell_m(x) \, dx = \begin{cases} 0 & \text{if } n \neq m \\ \frac{1}{2n+1} & \text{if } n = m \end{cases} \)

2. for \(n \in \mathbb{N} \), we have \(\ell_n(1) = 1 \).

We consider the space \(E = C([0, 1]) \) of real-valued continuous functions on \([0, 1]\) equipped with the inner product defined by \(\langle f, g \rangle = \int_0^1 fg \), and the subspace \(F_n \) of polynomial functions of degree \(\leq n - 1 \), recall that \((\ell_0, \ell_1, \ldots, \ell_{n-1})\) in an orthogonal basis in \(F_n \).

Consider a function \(f \) satisfying \(\int_0^1 x^k f(x) \, dx = 1 \) for \(0 \leq k \leq n - 1 \). using linearity, this is equivalent to

\[
\forall P \in F_n, \quad \langle f, P \rangle = P(1)
\]

In particular, using property 2., we have

\[
\forall k \in \{0, 1, \ldots, n - 1\}, \quad \langle f, \ell_k \rangle = \ell_k(1) = 1
\]

This proves that the orthogonal projection of \(f \) on the subspace \(F_n \) is

\[
P_n(f) = \sum_{k=0}^{n-1} (2k + 1) \langle f, \ell_k \rangle \ell_k = \sum_{k=0}^{n-1} (2k + 1) \ell_k
\]

from this we conclude that

\[
\|P_n(f)\|^2 = \sum_{k=0}^{n-1} (2k + 1)^2 \|\ell_k\|^2 = \sum_{k=0}^{n-1} (2k + 1) = n^2.
\]

Now, since \(\|P_n(f)\|^2 + \|f - P_n(f)\|^2 = \|f\|^2 \) we conclude that \(\|f\|^2 \geq n^2 \) with equality if and only if \(f = \sum_{k=0}^{n-1} (2k + 1) \ell_k \).

Published in AMM April 2008.
Problem 11259. Proposed by Nobuhisa Abe, NBU Attached Senior Hight School, Saiki, Japan. For integers n greater than 2, let

$$f(n) = \sum_{j=1}^{n-2} 2^j \sum_{S \subseteq \{1, \ldots, n-1\}, \text{card}(S) = j} \prod_{k \in S} k$$

where the sum is over all j-element subsets S of the set $\{1, 2, \ldots, n-1\}$. Show that $4(2n-1)! + (f(n))^2$ is never the square of an integer.

Solution, by Omran Kouba (Higher Institute for Applied Sciences and Technology, Damascus, Syria).

We will use the following fact which is well-known and can be proved by induction,

$$(1 + a_k)^m = \sum_{S \subseteq \mathbb{N}_m} \prod_{k \in S} a_k$$

where $\mathbb{N}_m = \{1, 2, \ldots, m\}$. (with the convention $\prod_{k \in \emptyset} a_k = 1$.)

So we can rewrite $f(n)$ in the following way

$$f(n) = \sum_{j=1}^{n-2} 2^j \sum_{S \subseteq \mathbb{N}_{n-1}, \text{card}(S) = j} \prod_{k \in S} k$$

$$= \sum_{j=1}^{n-2} \sum_{S \subseteq \mathbb{N}_{n-1}, \text{card}(S) = j} \prod_{k \in S} (2k)$$

$$= \sum_{\emptyset \subseteq S \subseteq \mathbb{N}_{n-1}, \text{card}(S) = j < n-1} \prod_{k \in S} (2k)$$

$$= \left(\sum_{S \subseteq \mathbb{N}_{n-1}} \prod_{k \in S} (2k) \right) - \prod_{k \in \mathbb{N}_{n-1}} (2k) - \prod_{k \in \emptyset} (2k)$$

$$= \left(\prod_{k \in \mathbb{N}_{n-1}} (1 + 2k) \right) - \left(\prod_{k \in \mathbb{N}_{n-1}} (2k) \right) - 1$$

We conclude that $f(n) = A_n - B_n - 1$, with $A_n = 1 \cdot 3 \cdot 5 \cdots (2n-1)$ and $B_n = 2 \cdot 4 \cdot 6 \cdots (2n-2)$. So if we define $g(n) = 4(2n-1)! + (f(n))^2$ we find that

$$g(n) = 4A_nB_n + (A_n - B_n - 1)^2$$

$$= (A_n + B_n)^2 - 2(A_n - B_n) + 1$$

From this, we see directly that

$$(A_n + B_n)^2 - g(n) = 2(A_n - B_n - 1) + 1 = 2f(n) + 1 > 0$$

$$g(n) - (A_n + B_n - 1)^2 = 4B_n > 0$$

and this proves that $(N-1)^2 < g(n) < N^2$ with $N = A_n + B_n$. So $g(n)$ can not be the square of an integer.

Published in AMM November 2008.
Problem 11260. Proposed by PAOLO PERFETTI, Mathematics Department, University “Tor Vergata,” Rome, Italy. Find those nonnegative values of α and β for which

$$\sum_{n=1}^{\infty} \prod_{k=1}^{n} \frac{\alpha + k \log k}{\beta + (k + 1) \log(k + 1)}$$

converges. For those values of α and β, evaluate the sum.

Solution, by OMRRAN KOUBA (Higher Institute for Applied Sciences and Technology, Damascus, Syria).

The answer is: the series converges iff ($\alpha = 0$) or ($\beta > \alpha > 0$) and then the sum is 0 if $\alpha = 0$ and $\alpha/(\beta - \alpha)$ otherwise.

- The case $\alpha = 0$ is easy since, then, all the terms of series are zero.
- Next we assume that $\alpha > 0$. Let’s define the general term sequence $(u_n)_{n \geq 0}$ by

$$u_0 = 1 \text{ and } \forall n \geq 1, \quad u_n = \prod_{k=1}^{n} \frac{\alpha + k \log k}{\beta + (k + 1) \log(k + 1)}$$

All these terms are positive, and we have

$$\forall n \geq 1, \quad \frac{u_n}{u_{n-1}} = \frac{\alpha + n \log n}{\beta + (n + 1) \log(n + 1)}$$

and this can be rearranged in the following way

$$\forall n \geq 1, \quad (\alpha - \beta)u_n = (\alpha + (n + 1) \log(n + 1))u_n - (\alpha + n \log n)u_{n-1}$$

Summing these equalities as n varies from 1 to m we find that

$$\forall m \geq 1, \quad (\alpha - \beta) \sum_{n=1}^{m} u_n = (\alpha + (m + 1) \log(m + 1))u_m - \alpha$$

(*)

- If $\alpha \geq \beta$ then from (*) we conclude that $(\alpha + (m + 1) \log(m + 1))u_m - \alpha \geq 0$ for every m that is

$$\forall m \geq 1, \quad u_m \geq \frac{\alpha}{\alpha + (m + 1) \log(m + 1)}$$

and the series $\sum u_n$ diverges since the well-known Bertrand series $\sum \frac{1}{n \log n}$ does.

- If $\alpha < \beta$ then from (*) we conclude that

$$\forall m \geq 1, \quad \sum_{n=1}^{m} u_n = \frac{\alpha - (\alpha + (m + 1) \log(m + 1))u_m}{\beta - \alpha} < \frac{\alpha}{\beta - \alpha}$$

and this proves the convergence of the series $\sum_{n=1}^{\infty} u_n$. Let ℓ be the sum of this series. Using (*) again we see that in this case we have

$$\lim_{m \to \infty} (\alpha + (m + 1) \log(m + 1))u_m = \alpha + (\alpha - \beta)\ell$$

If $\alpha + (\alpha - \beta)\ell \neq 0$ then the two series $\sum u_n$ and $\sum \frac{1}{n \log n}$ would have the same nature, and this contradicts the convergence of $\sum u_n$. So we must have $\alpha + (\beta - \alpha)\ell = 0$ that is $\ell = \alpha/(\beta - \alpha)$.

Published in AMM May 2008.
Problem 11262. Proposed by Ashay Burungale, Satara, Maharashtra, India. In a certain town of population $2n + 1$, one knows those to whom one is known. For any set A of n citizens, there is some person among the other $n + 1$ who knows every one in A. Show that some citizen of the town knows all the others.

Solution, by Omran Kouba (Higher Institute for Applied Sciences and Technology, Damascus, Syria).

Any citizen a in this town is a member of some n-citizen set and so he is known to some citizen b from the complement of this set. The set $\{a, b\}$ is a set of cardinality 2 and satisfy the property that “any two members of it know each other”.

Consider a set of citizens B of maximum cardinality with the property that any two members of it know each other.

If $\text{card}(B) \leq n$ then B is a subset of some n-citizen set and there is a person b in the complement of that set who knows every member of B, and by hypothesis he is also known to the members of B. Now, the set $B \cup \{b\}$ has the property that “any two members of it know each other” and this contradicts the fact that B was chosen to be of maximum cardinality. this contradiction proves that $\text{card}(B) \geq n + 1$.

Let B_0 be any subset of B of cardinality $n + 1$. On one hand, B_0 has the property that “any two members of it know each other”, and on the other hand, there is a citizen M in B_0, who knows any member of the complement of B_0, (since the complement has cardinality n,) Clearly M knows all the citizens in the town.

\[\Box\]

Published in AMM November 2008.